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 Abstract 
 

The paper reports on a few experimental results of a computer simulation 
of learning the verb morphology of Italian, English and Arabic with the 
same type of neural architecture based on Kohonen’s self-organizing 
maps. Issues of the mental organization of the resulting morphological 
lexica are explored in some detail and discussed in the light of the 
differential distribution of regular and irregular inflections in the three 
languages. It is shown that typologically diverse, non trivial aspects of 
the underlying paradigmatic structure of the three verb systems 
effectively emerge through sheer exposure to realistic distributions of 
verb forms devoid of morpho-syntactic content. We argue that these 
results go a long way towards explaining how global organization effects 
in the mental morphological lexicon may eventually result from local 
word processing steps. 
 

 
 
1.1 Introduction 
 
The developmental acquisition of the inflectional system of a language requires the 
fundamental ability to identify, on the basis of a child’s exposure to its unanalysed 
parental input, a repertoire of formal means of marking morphological contrast. In a 
deliberately simplified version of this task, the child’s input can be assumed to be an 
unstructured list of independent word forms, already properly segmented out of their 
embedding phonetic stream, and perceived by a learner according to a certain 
probability distribution. Although this helps to focus on issues of word internal structure 
only, the task of morphological marker identification remains, for a number of reasons, 
a considerably hard one.  
 First, morphological markers are known to wildly vary cross-linguistically 
(Bybee 1985, Anderson 1992, Croft 2001, Stump 2001, Haspelmath 2002), thus leaving 
the learning child with an exceedingly unconstrained space of alternative hypotheses for 
word segmentation, ranging from affixation to templatic structures and reduplication. 
Secondly, they are poorly salient from a perceptual viewpoint, as they tend to appear in 
                                                 
1 The present paper is the outcome of a joint, highly cooperative effort. However, for the specific 
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phonologically weak, often unstressed, word boundary positions. Moreover, they 
convey fairly abstract and procedural semantic content (i.e. morpho-syntactic 
properties), having very few if any perceptual correlates in the grounding environment 
where words are uttered. Finally, when a language offers more than one realization of a 
given array of morpho-syntactic properties (indeed an unmarked case in the entire Indo-
European family), multiple markers appear to cluster in paradigmatically-related 
classes, whose identification is part and parcel of the process of mastering the selection 
of the proper inflectional material, given a word’s inflectional class. All in all, learning 
the inflection system of a language requires the development of a highly abstract 
classification system (which we may dub, in traditional linguistic terms, a “grammar”) 
that, far from being an epiphenomenal by-product of a basically unstructured, whole-
word lexicon, plays an active role in both on-line word processing and lexical access 
and representation (Marslen-Wilson et al. 1994).  
 In many respects, the learning task is reminiscent of the Harrisian goal of 
developing linguistic analyses (and ultimately a linguistic ontology of basic categories 
and atomic constituents) on the basis of purely formal, algorithmic manipulations, 
traditionally known as discovery procedures, of relatively raw language data (Harris 
1951). Here (as with the problem of learning inflection broached above) a level of 
linguistic explanation is attained by first developing a generalization method, to then 
assess the obtained generalizations against some established theoretical background.  
 However, as we shall see in more detail in the following section, morphology 
learning cannot be simply equated with the linguist’s job of establishing an ontology of 
morphological markers. Linguists rely on an extensive battery of a priori procedural 
knowledge (such as “morphologically complex words can be segmented exhaustively 
into non-overlapping constituent morphemes”, “allomorphs tend to be arranged into a 
minimum number of disjunctive paradigm-based classes” etc.). This knowledge plays a 
fundamental role in ensuring convergence of Harrisian procedures on the sort of 
empirical generalizations aimed at by linguists. We are thus faced with the issue of 
whether children grow up equipped with the same battery of knowledge biases. In other 
words: where does all these a priori assumptions on word structure come to a learner 
from? Can we identify some basic cognitive mechanisms that are primary and 
foundational in the ontogenetic development of language acquisition with respect to 
more elaborated and specific categories of linguistic knowledge? 
 To address these questions, this paper presents a computer model of morphology 
learning that is intended to portray the learning task of marker identification as a process 
of emergence of morphological structure in the learner’s mental lexicon. The approach 
is aimed at addressing a number of well-known aspects of cognitive development, such 
as the role of fluency and entrenchment in the ontogenetic development of procedural 
knowledge (Anderson 1993, Boyland 1996), the impact of sequential distributions on 
aspects of reduction in the individual articulatory gestures of word production (Bybee 
2002), morphological irregularization, global effects in the morphological organization 
of both lexicon access and lexical representation (as opposed to whole-word models of 
the speaker’s mental lexicon), well-known effects of local similarity in on-line 
morphological processing (Albright 2002), graded morphological structure (Hay and 
Baayen 2005). To anticipate some of the conclusions we shall draw in the final part of 
the paper, computer modelling of language learning, with its strong reliance on 
probability distributions and machine learning algorithms, may apparently bear little 
resemblance to traditional theoretical accounts of inflectional morphology. It may turn 
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out that the fine-grained levels of explanation offered by computational simulations of 
morphology learning are not straightforwardly amenable to traditional grammatical 
categories. Yet, we agree with Goldsmith and O’Brien (2006) that simulating the 
emergence of complex levels of morphological organization in the mental lexicon is by 
no means incompatible with the view that speakers internalize a complex body of 
abstract linguistic competence. As we will show in the following pages, such a body of 
abstract knowledge is more intimately related to usage-based aspects of the language 
input than some theoretical linguists are ready to recognize.  
 The paper is structured as follows. Section 2 overviews different approaches to 
the problem of morphology learning in the light of the above-mentioned cognitive 
requirements and recapitulates some of the hardest challenges in modelling what we 
know about human morphological behaviour. Section 3 provides an introductory 
description of so-called Self-organizing Maps (Kohonen 2001), a member of the family 
of competitive neural networks exhibiting a topological behaviour that is particularly 
suitable for modelling the dynamics of lexical organization and on-line morphological 
processing.. Sections 4 e 5 outline the neural architecture used for our experiments and 
review a few learning results obtained on typologically diverse training data. Finally, in 
section 6 we draw some conclusions, carve out our future research agenda and sketch 
some prospective work. 
 
 
2. Background 
 
The acquisition and mastering of productive systems of inflectional morphology in 
natural languages are known to be extremely difficult tasks. Most adult second language 
learners develop relatively fixed syntactic constructions, with words typically occurring 
in one morphological form only (Klein and Perdue 1997, Wilson 2003). Similarly, 
pidgin and Creole languages are characterised by a relatively impoverished system of 
inflectional morphology. Moreover, inflectional competence, in both adults and 
children’s language behaviour, tends to be relatively brittle and break down fairly 
quickly under various kinds of processing pressure and language impairments (Dick et 
al. 2001).  
 In this section, we shall focus on what we take to be a logically preliminary step 
in morphology learning: the process of scanning a word form through, to search for its 
morphological formatives. In particular, we shall mainly be concerned with the issue of 
identifying markers of inflectional categories such as person, number, gender, tense and 
mood, which are known to form the grammatical backbone of conjugational paradigms 
and constitute a primary goal of early efforts of morphology learning in child language 
maturation. The problem is traditionally conceptualized as the task of splitting an 
inflected word form into its constituent morphemes. As the notion of morpheme in both 
theoretical and cognitive linguistics has been the locus of much controversy over the 
last thirty years or so (a debate upon which dust does not seem to have settled yet), we 
deliberately sidestep the issue of the ontological status of inflectional and lexical 
formatives, to portray the task under scrutiny as the somewhat preliminary and more 
fundamental goal of identifying recurrent elements of formal realization of 
morphological contrast. To be more concrete, we would like to focus on the ontogenetic 
process by which an Italian child, exposed to verb forms such as amiamo ‘we love’, 
canto ‘I sing’, vengo ‘I come’ etc., is able to identify the recurrent segmental units 
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‘-iamo’ and ‘-o’ as typical (albeit not necessarily exclusive or minimal) carriers of  
information about person and number in the Italian present indicative sub-paradigm.  
 Even when stated in these simplified terms, the problem is considerably harder 
than expected. First, the child has no way to know, a priori, where inflectional 
formatives should be looked for within a verb form. Her/his search space is thus 
potentially very large: a huge haystack with comparatively few morphological needles. 
Secondly, the amount of formal redundancy exhibited by verb forms in a given 
language goes well beyond the limited range of recurrent morphologically relevant 
markers. Rhyming words, false friends, false prefixes and the like are virtually 
ubiquitous and tend, at least in principle, to obscure morphologically relevant analogies. 
We may refer to this as the background noise problem. On top of that,  relevant 
analogies happen to be often confined to one segment only, in the perceptually weak 
coda of a word final syllable. Even in the same language, prefixation, suffixation and 
stem alternation often present themselves simultaneously in tricky combinations. 
Particularly in highly frequent irregular or subregular verb forms, more strategies of 
morphological marking appear to often be overlaid, to the point that formal 
discontinuity is a prominent feature even of those languages that do not exhibit non-
concatenative morphology.  
 It is very difficult, for a non linguist, to disentangle herself/himself from such an 
intricate coil of input evidence. The machine learning literature, with its large array of 
assumptions about algorithmic searching of formal redundancies, has enormously 
contributed to shed light on these and related issues (Pirrelli  2003 and references 
therein). The apparently naïve question at the heart of our investigation is thus the 
following: what does it take for a child to become sensitive to few morphologically 
relevant formal analogies and remain blind to the very many ones bearing no or scanty 
relationship to abstract principles of grammatical organization in the morphological 
lexicon? Linguists have often confronted themselves, in either direct or indirect ways, 
with this puzzling question. In the following section we briefly recapitulate some of the 
most influential answers in the literature. This will lead us to talk about the problem of 
the possible sources of the knowledge required by a child to home in on the appropriate 
battery of language-specific markers of inflectional features.      
 
 
2.1. Nativism  
 
According to a well-established nativist position, emanating from the generative 
approach to adult grammar competence of Chomskyan inspiration, children are 
equipped with an innate set of options for acquiring distinct language types. According 
to this view, the extensive cross-linguistic variation exhibited by the morphology of 
human languages can be explained by positing language-specific ways of setting these 
options, called “parameters”, in the grammar word module. In particular, it has been 
argued that the child scans her/his linguistic environment for designated structures or 
“cues”, to be found in the mental representations which result from hearing, 
understanding and parsing words (Lightfoot 1999, Hyams 1986, 1996). Cues which are 
realized only in certain typological families of grammar constitute the parameters. For 
example, upon understanding a word form like sneezing, the child comes up with an 
abstract representation such as [V[sneeze] progr[ing]] allowing her/him to set a word-final 
parameter concerning the position of inflectional markers in the English verb. Surely, 
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the parameter can only be set when a child has already homed in on a partial analysis 
which treats sneeze and -ing as separate sub-word constituents, the latter being 
interpreted as a marker of abstract morpho-syntactic features. Thus, the availability of 
valuable cues for morphology learning presupposes an appropriate segmentation of 
sneezing rather than providing a principled solution to the haystack search problem. 
 
 
2.2. Connectionism 
 
Over the last twenty years, connectionism has challenged the symbolic view of 
morphological processing dominant in the Chomskyan tradition to provide a coherent 
alternative approach to the issue of learning word internal constituents. One of the most 
articulated and full-fledged recent illustrations of this proposal (Plaut and Gonnerman, 
2000) views morphology as an interface realm, emerging as a pattern of activations in 
the layer of hidden units mediating the relationship between lexico-semantic and 
phonological word representations in an artificial neural network (Figure 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A connectionist framework for lexical processing (adapted from Plaut & Gonnerman, 2000) 
 
To the extent that a particular surface pattern occurs in many words and maps 
consistently to certain aspects of lexical meaning, the representation conveyed through 
the internal (hidden) layer as an array of activation states will come to reflect this 
mapping, and will process it relatively independently of other parts of the word. This 
developmental process accounts for gradient effects of morphological structure, with 
intermediate degrees of morphological transparency being related to intermediate 
degrees of either phonological or semantic transparency (Plaut and Gonnerman 2000, 
Hay and Baayen 2005). For our present concerns, the interest of this proposal rests on 
the possibility that the child’s hypothesis space be effectively constrained by relating 
the search for formal redundancies to the existence of shared semantic representations. 
This should considerably limit the combinatorial explosion of useless mappings 
between deceptively similar word forms (background noise), but does not seem to 
address our segmentation problem in a principled way, for two basic reasons. First it 
requires that children have access to highly complex, fully developed lexico-semantic 
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representations, whose early availability in the parental input to the child is somewhat 
moot. In fact, we have evidence that the acquisition of abstract morpho-syntactic 
categories and a full understanding of their role in language processing tend to occur at 
a comparatively late stage of language maturation, when the child has already mastered 
those aspects of morphological realization and marker selection we are presently 
concerned with (Clahsen 1989, Wilson 2003). Secondly, connectionist representations 
of the phonological input of inflected word forms do not offer a principled account of 
the word mapping problem. This point is illustrated by the input word representations 
used by Plunkett and Juola (1999) for experiments on learning English noun plural 
inflection (illustrated in Figure 2 for the words cats and oxen). Input representations are 
obtained by integrating phonological and morphological information into a fixed-size 
template-like structure (where the segment  sequence /ts/ in /kAts/, for example, is, 
contra phonological evidence, split by an intervening empty vowel slot), with the result 
of enforcing a built-in alignment between input representations of words selecting 
different inflectional endings. The alignment has the effect of slipping in a strong 
language-specific bias that appears to presuppose, rather than explain, the problem we 
are presently concerned with. 
 

C C C V V C C C V C 
# # k # A # # t # S 
# # # # O # k s E N 

 
Figure 2: A templatic input representation for English noun plurals (from Plunkett and Juola 1999)  
 
 
2.3. Distributionalism 
 
Harris’ assumption that morphological categories can be derived mechanically from an 
analysis of the distributional properties of word forms in context has the potential of 
addressing the range of questions we are concerned with in this paper. According to 
Harris’ view (Harris 1951), identification of relevant inflectional formatives is the final 
result of building a statistical model of the way overt, perceptually salient strings of 
phonological segments follow each other in the language input which is the ultimate 
object of linguistic investigation. Endorsing a somewhat radical mistrust in the role of 
semantic or more generally non perceptually overt knowledge in language analysis 
(Matthews 1993), Harris delineates a purely formal methodology whereby the only 
evidence available to the linguist is made up out of strings of linguistic units and their 
distributions. His approach, after a long-lasting obsolescence, has recently played an 
inspirational role for a number of machine learning approaches to unsupervised 
morphology acquisition (Gaussier 1999, Goldsmith 2001, Schone and Jurafsky 2000, 
Creutz and Lagus 2004, Wicentowsky 2004). 
 In a recent adaptation of Harris’ ideas, John Goldsmith (2001, 2006) casts the 
distributional hypothesis into a powerful information theoretic framework, known as 
Minimum Description Length (MDL, Rissanen, 1989). Starting form the assumption 
that morphological information about a language can hardly be reduced to local 
information about letter bigrams or trigrams of that language, Goldsmith frames the task 
as a data compression problem: “find the battery of inflectional markers forming the 
shortest grammar that best fits training evidence”, where i) a grammar is a set of 
paradigms defined as lists of inflectional markers applying to specific verb classes and 
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ii) the training evidence is a text corpus. The task is a top-down global optimization 
problem and boils down to a grammar evaluation procedure. Given a set of candidate 
markers, their probability distribution in a corpus and their partitioning into paradigms, 
MDL allows calculation of i) the length of the grammar (in terms of number and size of 
its paradigms) and ii) the length of the corpus generated by the grammar (i.e. the set of 
inflected forms licensed by the grammar according to a specific probability 
distribution). In MDL, the notion of length is derivative of the information theoretic 
notion of the number of bits required to encode linguistic units, whether they are stems, 
suffixes or word tokens. Intuitively, minimising the length of the corpus in bits requires 
that very frequent tokens should be assigned a shorter bit code than less frequent tokens. 
Minimising the length of the grammar, on the other hand, requires that frequently used 
paradigms are given preference to rarely used ones, as the cost of encoding a rare 
paradigm in bits is very high. Hence, a good language model is the one where the sum 
of the length of the grammar and the length of the corpus generated according to the 
probability assigned by the grammar is smallest. This policy disfavours two 
descriptively undesirable extremes: a corpus-photograph model, with a very long 
grammar where each verb form has, as it were, a paradigm of its own, such that the 
inflected forms generated by the grammar have the same probability distribution found 
in the corpus; and a very short but profligate model, with one paradigm only, where any 
verb combines with any marker according to the product of their independent 
probability distributions, thus generating many word forms that are not attested in the 
training corpus (including goed for went, stricked for struck, bes for is etc.). 
 From a cognitive perspective, Goldsmith’s approach has the merit of addressing 
the problem of morphology learning with no recourse to prior language-particular 
knowledge. Furthermore, he adopts a mathematical framework where the development 
of morphological knowledge can be viewed as the emergent result of data compression, 
arising, both phylogenetically and ontogenetically, from the pressure of keeping a 
potentially unbounded amount of lexical knowledge in a finite memory store. We find 
these ideas fundamentally correct. On a less positive note, in Goldsmith’s approach the 
issue of morpheme segmentation is kept separate from that of morpheme inventory 
evaluation, both logically and algorithmically. The two learning phases make no 
contact, so that we are left with no principled answer to the problem of the interplay 
between word processing and morphological organization in the speaker’s mental 
lexicon: does morphological organization play any role in word processing? 
 Moreover, it is hard to see how a child learning morphology can possibly be 
engaged in such a top-down search for global minima. What we know about word 
processing in human subjects supports the view that speakers are extremely sensitive to 
local similarity maxima and tend to analyse and generate novel word forms 
predominantly (if not exclusively) by analogy to their closest cognates. For example, 
Italian speakers appear to be able to use fine-grained classes of verb stems to assign 
them the appropriate conjugation paradigm. According to Albright (2002), Italian 
speakers are able to assign a 0.937 conditional probability to the event that an X[end] 
verb stem is inflected for the second conjugation class. This means that when an Italian 
speaker is exposed to the nonce 1s present indicative form trendo, (s)he is almost 
certain that its infinitive is trendere (and not trendare or trendire). Most evidence for 
such an acute sensitivity to local similarity comes from irregularly inflected verb forms 
(but see again Albright 2002, for similar effects with regular verbs) and is often 
contrasted, in the psycholinguistic literature, with the somewhat opposite tendency 
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towards using default rules in the production of regularly inflected forms (Say and 
Clahsen 2001). According to many scholars (Pinker and Prince 1988, Prasada and 
Pinker 1993, Marcus et al. 1995 among others), the contrast supports a dual route model 
of word processing and learning: irregular forms are stored in full and are generalized 
over by local similarity, while regular forms are stored and indexed by their roots and 
affixes and produced by default rules of some kind. Other scholars oppose to such view 
and argue in favour of a unitary underlying mechanism accounting for both regular and 
irregular forms (Rumelhart and McClelland 1986, Plunkett and Marchman 1991, Bybee 
1995, Ellis and Schmidt 1998 among others).  
 We have no room here to address this debate in any detail. Suffice it to point out 
that, for our present purposes, we are faced with an apparent paradox. We agree with 
Goldsmith that learning the morphology of a language can be framed, in machine 
learning terms, as a global optimization problem: morphologically relevant analogies 
(unlike local, potentially misleading similarities)  emerge from a global analysis of the 
available input evidence. On the other hand, we are forced to reconcile this truth with 
the fact that speakers use local analogy-based strategies to develop morphological 
generalizations. The somewhat paradoxical question then is: how can a learner home in 
on global, paradigm-based analogies on the basis of local processing strategies?   
 In the remainder of this paper we intend to show that Self-Organizing Maps 
(SOMs), a particular family of artificial neural networks, can offer an interesting way 
out of this apparent paradox. As we shall see, SOMs can develop topological maps of 
input stimuli where the latter are organized according to global classification criteria. 
This is so in spite of the fact that SOMs learn and process input stimuli on the basis of 
principles of purely local analogy as will be shown in the following section. 
 
 
3. Self-Organising Maps 
 
 
3.1. Brain Maps 
 
A Self-Organizing Map (hereafter SOM, Kohonen 2001) is an unsupervised machine 
learning algorithm drawing considerable neuro-physiological inspiration from the 
behaviour of so-called “brain maps”. Brain maps are medium to small aggregations of 
neurons found on the cortical area of the brain that are involved in the specialized 
processing of specific classes of sensory data. Processing simply consists in the 
activation (“firing” in neurophysiological terms) of a certain neuron (or neuron 
aggregation) each time a particular stimulus is presented. The associative links between 
a stimulus and its firing neurons are described, in  neurophysiological terms, as 
“mapping”. A crucial feature of the sort of mapping performed by brain maps is that 
similar stimuli fire nearby neurons. As we shall see in more detail later on, such a local 
sensitivity to similarity in the presented stimuli develops inside a globally ordered 
topological structure. This is so because local mapping must obtain over the entire brain 
map area, thus enforcing an incremental principle of global organization of firing 
neurons. Examples of brain maps are i) the somatotopic map where stimuli generated in 
different parts of the body are mapped onto different specialised areas, ii) the tonotopic 
map where neurons respond to sound stimuli according to the frequency of the sound or, 
iii) the colour map on the visual area V4. The genesis of such brain maps is also 
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interesting for our present cognitive concerns. Although some of them can be 
considered as genetically pre-programmed, there is evidence that at least some aspects 
of such global neural organizations emerge according to the sensory experience of the 
subject (Jenkins et al. 1984, Kaas et al. 1983).  
 In 1984, Teuvo Kohonen described an iterative, unsupervised Artificial Neural 
Network (ANN) exhibiting some salient characteristics and behaviour of brain maps. 
Each unit/node of an ANN can be viewed as a receptor neuron that reacts to (or is 
activated by) a particular class of stimuli only. A node is an independent processing unit 
associated with a small memory trace that stores the stimulus the node is sensitive to. 
The more faithful the trace, the more sensitive the receptor. From this perspective, 
simulating the behaviour of a brain map is tantamount to developing an incremental 
ANN where similar stimuli trigger topologically neighbouring nodes. 
 The SOM learning algorithm is iterative. At each iteration the network is 
exposed to a random input stimulus. The first phase of the iteration consists in a 
network activation, culminating in the identification of the best matching unit on the 
map. The best matching unit (BMU) is the receptor whose memory trace happens to be 
closest to the current input. Memory traces are sometimes called prototype vectors 
(because they are represented as vectors),  but they can also be referred to simply as the 
unit memory content. If we consider that the input is just another vector, the search for 
the best matching unit simply consists in finding the map node that contains the vector 
most similar to the input. Returning to the analogy to brain maps, the best matching unit 
in an ANN plays the role of a real neuron(s) being fired in a brain map. 
 In a SOM, the activation part of a learning iteration is followed by an updating 
phase. The memory contents of a certain number of map units are updated for them to 
look closer to the new information provided by the last input stimulus. An update 
consists in adjusting a number of memory traces to the input pattern just presented to 
the map. Using a slightly far-fetched metaphor, we can describe the neuron memory as a 
camera film being repeatedly exposed to an image at very short time intervals (learning 
iterations) for an amount of time insufficient for a clear image to imprint the film one-
shot. At each exposure, the image on the film resembles more and more closely the 
input image the film is exposed to. It is important to appreciate that the update process 
is undergone neither by all neurons, neither at the same rate for all involved neurons. In 
fact two parameters, the neighbourhood radius and the learning rate, govern the learning 
process in determining, respectively, the number of units being updated at each iteration 
and the amount of incremental adjustment at each time tick. Both parameters play a 
crucial role in the dynamics of the learning process and decrease as learning progresses. 
 
 
3.2. The neighbourhood radius 
 
After the BMU is identified, a number of neurons are updated: these include the BMU 
itself and a set of its neighbouring units on the map, within a distance (from the BMU) 
defined by the neighbourhood radius. At the beginning of the learning process, the 
radius is long enough to guarantee that large neighbouring areas of the map are updated 
at each iteration. This ensures that a global order is enforced upon memory traces. 
Finer-grained relationships are learned at later stages, when the neighbourhood radius is 
progressively reduced in the course of learning. This defines a fundamental dynamics of 
a SOM learning trajectory to which we shall return later.  



Vito Pirrelli  & Ivan Herreros 

 278

3.3. The learning rate 
 
The learning rate defines the amount by which the memory content of each unit is 
modified at each iteration. At early stages of learning, the rate is kept high, thus 
allowing memory traces to quickly adjust to input data. As learning progresses, 
however, the rate decreases and memory traces gain in stability.  
 
 
3.4. Plasticity 
 
The joint effect of the dynamics of both neighbourhood radius and learning rate defines 
the so-called network plasticity, i.e. the capability of a map to modify its content to 
adapt it to input data. At early stages, the map content is extremely unstable and 
adaptive due to a long neighbourhood radius and a high learning rate. In the end, the 
map plasticity reduces considerably, thus allowing for a process of fine tuning only. As 
a result of this joint dynamics, a SOM can learn the global order underlying input data 
only at early stages, when plasticity is high and the map topology can be modified 
easily. By the same token, it is only when plasticity goes down and the network 
becomes more stable that fine-grained distinctions are acquired. 
 
 
3.5. Frequency effects on a self-organising map. 
 
SOMs are very sensitive to input frequency. To better understand this point, it is 
important to bear in mind that the basic task of a SOM is to accommodate input stimuli 
on its surface by associating them with corresponding memory traces. If there is enough 
room on the map, then every input stimulus will be assigned a faithful trace though 
learning. For lack of room on the map, on the other hand, similar input stimuli will tend 
to compete for the same memory traces. In this competition, both stimulus token 
frequency and stimulus class frequency play a key role. By their being repeatedly 
exposed to the map, high token frequency inputs are bound to carve out a map area 
where they are memorized faithfully, even if they form a class of their own: due to their 
high token frequency, they can in fact win the competition by themselves. On the other 
hand, low token frequency stimuli will leave a memory trace on the final map only if 
they are part of a high frequency class of stimuli, that is a class where the sum of token 
frequencies of its member is high. 
 This has a simple probabilistic interpretation. For example, in the case of the 
Italian past participle, if we consider the class of verb forms ending in -ato, its class 
frequency will tell us how likely we are to find a member of that class in a given corpus. 
This has also implications in terms of memory traces. When memory traces are exposed 
not to a single stimulus type, but to an entire class of similar stimuli, they will tend to 
reflect, for lack of sufficient room, what the class members have in common. Let us 
suppose we are running a toy experiment where the word cantato (‘sung’) leaves a 
memory trace on the final SOM only because it is part of a high frequency class whose 
other two members are amato (‘loved’) and pensato (‘thought’). As these three forms 
share the same memory trace, the latter will reflect the commonalities partaken by them, 
for example the ending -ato. The case illustrates a simple effect of “generalization as a 
shortage of memory”.  
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 On the other hand, if a high frequency stimulus forms a class of its own, the 
particular memory trace (or memory area) fired by it on the map should be able to 
represent it faithfully. This is what happens, for example, when we find that the form 
said is fully memorized on an English past participle map. Note that this situation is the 
mirror image of what we found out in the previous paragraph: in fact, full storage of a 
very frequent input leaves no room for generalization. The natural question at this 
juncture is: if words with high token frequency are fully memorized, what is the 
relationship between them and other partially memorized, less frequent words which 
nonetheless belong to the same class as the former? 
 So far we have discussed how both token and class frequency affect a) the 
possibility for a stimulus to be learned by a SOM and b) the kind of memory trace the 
stimulus is likely to leave on the output map. In both cases we have been looking at the 
end result of learning. It is now time that we turn to discussing in some detail what 
happens during the learning process as such. 
 In the process of learning, traces memorised on a SOM slowly approximate 
original input representations. If an input is presented a number of times exceeding a 
certain threshold, the SOM will contain a memory trace with a faithful representation 
for that input. According to the dynamics of the learning process, however, the 
minimum threshold goes down as learning progresses (and the neighbourhood radius 
decreases). In other words, the rate at which an input is presented to the map has a direct 
impact on the rate at which the input is “learned”. Intuitively, single tokens are going to 
be learned at a rate which is proportional to their frequency. Similarly, frequent stimulus 
classes are learned earlier than less frequent classes (if the latter are going to be learned 
at all).  
 To be more concrete let us turn to the map of Italian past participles. As stato 
(‘been’) is a very frequent item in the training corpus, we expect the following three 
consequences: a) stato will be memorized on the map; b) it is likely to have one or more 
dedicated firing neurons, that is neurons with a faithful image of the input; c) the image 
of stato will appear at an early stage of the learning process. What about less frequent 
forms like amato or cantato? 
 In a SOM, the global order of the map is fixed at early learning stages, at around 
the same time frequent forms are memorized in full. In fact, it turns out that high-
frequency items play a crucial role in i) shaping the (high-level) topography of the 
resulting SOM, and ii) conditioning the topological distribution of the remaining 
information. In fact, very frequent input items act as prototypical representatives for 
their whole class over the first learning stages, thus anchoring their class representation 
throughout the learning process. It is only at later stages, when fine-grained information 
about the remaining members of the class is separated from the information about the 
class prototype that the whole class is fully learned. The complex paradigmatic structure 
of Italian past participles is particularly suitable to illustrate this kind of behaviour. 
 
 
4. Experiment Architecture 
 
The computational architecture we developed for these experiments consists of two 
hierarchically connected SOMs (Fig. 3), whose mode of interaction is reminiscent of 
Time Delay Neural Networks (Waibel et al., 1989). Input word forms are strings of 
alphabetic characters. At each exposure, an input verb form triggers a series of 
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activations on the first level map. All activations triggered by the same input form are 
integrated into an “activation image” that is in turn processed by the second level SOM. 
This way, the first level image plays the role of a short term memory temporarily 
storing the character-based information relative to a single input form, for this 
information to be processed wholesale by the second level map.  
 
  

 
 

Figure 3: A two-level SOM architecture 
 

Activations on the first level SOM are produced by consecutive time-bound scans of the 
input form. Each activation represents the map’s response to a sub-context of the whole 
input, whose fixed size is measured as the number of alphabetic characters it contains. 
For the current set of experiments, the context size was set to 3. The second level SOM 
takes as input the output image of the current input form on the first level map. The 
upper level SOM clusters word forms according to their activations images on the lower 
level SOM. Another way to look at the first level SOM is as a perceptual interface 
between the raw character-based representation of an input form and receptors on the 
second level map. The fundamental benefit of this two-staged processing strategy is that 
the dimensionality of each “activation image” remains fixed, independently of input 
size. 
 
 
5. Experimental Results 
 
In this section, we report the experimental results of a few computer simulations of 
learning verb forms in Italian, English and Arabic. In the Italian and English 
experiments, we contrast the differential results obtained by training the map on two 
data sets for each language, one where verb forms are presented to the map according to 
their frequency distribution in a corpus, the other one where training data are distributed 
uniformly. The comparison sheds light on the role of frequency in the learning 
dynamics by exploring two considerably different verb systems (Italian and English) in 
terms of the relative prominence of sub-regular verb forms with respect to fully regular 
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ones. On the other hand, the Arabic results are based on one training configuration only, 
whereby fully vocalized verb forms are presented to the map according to their 
frequency distributions in the LDC Arabic corpus (Maamouri et al. 2004). For each 
experiment, we focused on paradigmatically homologous verb forms: past participle 
masculine singular forms for Italian, past tense forms for English, perfective masculine 
third singular forms for Arabic.  
 The experiments are intended to cover a fairly wide range of both typological 
and structural dimensions of cross-linguistic morphological variation. English and 
Italian verb forms are contrasted with Arabic data along the concatenative vs non-
concatenative dimension of inflectional marking. From this standpoint, the crucial issue 
is whether it is possible for a single map to simulate the differential processes of 
acquisition of typologically as diverse morphological constructs as inflectional endings, 
continuous stems, word patterns and discontinuous  stems on the basis of uniform 
requirements on input representation. This is not trivial, since, as we saw above, the 
representation requirements for English and Arabic data are potentially conflicting and 
generate hard alignment problems.  
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Figure 4: Type vs. class token frequency in the Italian past participle 

 
Another important dimension of variation this set of experiments is intended to shed 
light on concerns the different distribution of regular and irregular inflections in 
languages such as English and Italian and the way such differences may impact 
morphology learning. Figures 4 and 5 illustrate this point in connection with the 
distribution of past participle and past tense forms in the two languages, by type and 
class token frequency plotted on a log scale. Forms are grouped according to loosely 
defined inflectional classes, each including inflected forms sharing the orthographic 
rendering of the word final syllable nucleus. Admittedly, the criterion is fairly crude and 
fails to cluster together forms such as left and felt whose past tense formation processes 
are very similar. Nonetheless, the resulting classifications retain some morphological 
plausibility and stake out the space of formal variation a learner is exposed to. 
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Figure 5: Type vs. class token frequency in the English past tense 
 
The difference in distribution between Italian and English data is striking. Italian forms 
are scattered along a fairly uniform continuum, with subclasses of irregular forms 
exhibiting increasingly prominent gang effects in terms of their type cardinality as we 
move from left to right along the x-axis. On the other hand, English forms can sharply 
be divided into two groups: irregular forms on the left-hand side of our plot, forming a 
constellation of scantly represented morphological sub-classes (whose cardinality 
hardly exceeds the 10 units) and the class of regularly inflected forms on the other hand, 
covering the vast majority of English verb types. Besides, the Italian distribution shows 
a prominent log-linear correlation between type frequency and class token frequency, 
totally missing in the English past tense. This fact, as we shall see in a moment, has 
significant consequences on the learning dynamics of the two systems.    
 
 
5.1. Italian past participles 
 
Input forms consist of 470 different singular past participle forms (for a total amount of 
5157 tokens) from the Italian Treebank (Montemagni et al. 2003). The highest frequent 
form is stato (‘been’, with 382 occurrences), followed by fatto (‘done’, 180), detto 
(‘said’, 131), visto (‘seen’, 77) and avuto (‘had’, 70). The least frequent forms appear 
only 3 times in the Treebank and cover 106 different forms, 75 of which ending in -ato 
(first conjugation), 15 in -ito (third conjugation) and only 2 in -uto (second 
conjugation). Of the remaining 14 form types of frequency 3, all undergoing a sub-
regular  past tense formation (Pirrelli, 2000), only two are verb base forms (namely 
sciolto and stretto) while the remaining 11 are derivatives such as esteso, rimosso and 
trascorso. As the training corpus is a collection of newspapers articles, speech report 
verbs such as dichiarato (‘declared’), aggiunto (‘added’) or annunciato (‘announced’) 
are among the most frequent form types. Surely, these figures prevent us from taking 
this experiment representative of the typical input evidence an Italian child is exposed to 
in the course of her/his morphology maturation. Nonetheless, our word distributions, 
however not as realistic as we would like them to be, do reflect, to a certain degree of 
approximation, a general bias towards consistently sub-regular high-frequency Italian 
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verb forms such as detto (‘said’),  fatto (‘done’), visto (‘seen’), chiesto (‘asked’) etc., 
that happens to hold independently of variation of topic, gender and pragmatic 
grounding.  
 We simulated two different learning sessions: one where verb forms are 
presented to the map according to their frequency distribution in the Italian Treebank, 
the other where training data are assumed to be distributed uniformly. Figure 6 gives 
two snapshots of the state of a second level map in the two learning sessions at the same 
(early) stage.  Grey triangles highlight map nodes that are fired when past participles of 
the -sto class  (e.g. visto ‘seen’ and chiesto ‘asked’) are presented to the map. Black 
triangles highlight nodes that are sensitive to the -tto family (fatto ‘done’, detto ‘said’ 
etc.). 
 

  
 

 
Figure 6: The Italian past participle 

 
The important difference between the two snapshots is that the map trained on token 
frequencies neatly separates the two verb classes, while the other map tends to confound 
them: in other words, the former map develops entrenched, differential specialisation 
for –tto and –sto ending forms quite early on the basis of their token frequencies, while 
the latter SOM more reluctantly converges towards specialisation, for lack of evidence 
on token distribution. Later in the paper, we explain this developmental difference by 
arguing that very frequent forms like visto, fatto and detto tend to act as prototypes of 
their own class.  
 
 
5.2. English past tenses 
 
The experiment input consists of the 548 most frequent past tense forms in the British 
National Corpus (Leech 1992). The top-most ranked such forms are was (34836 
occurrences), did (20247), said (18051), were (10570) and had (9573), accounting for a 
total of 93278 occurrences, out of all 141501 past tense forms attested in the training 
corpus. Like with the Italian experiment, we simulated two learning sessions, with and 
without token frequencies. Interim results of the two sessions, at comparable learning 
stages, are depicted in Figure 7, showing two dramatically different topological 
structures. In the right-hand map of Figure 7, grey squares mark map neurons activated 
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by –ed ending forms, while black squares are fired by was, had and did. In a 6x8 map 
grid, regular forms spread over 41 nodes, leaving only seven nodes to all remaining 
irregular forms. The result sets the stage for massive regularization of sub-regular 
forms, which are swamped by their –ed competitors, and seemingly lends support to the 
view that the two sets of regular and sub-regular past tense forms cannot possibly be 
learned through the same mechanism. On the other hand, the left-hand map of Figure 7 
shows the results of learning by token frequencies: regular –ed ending forms now take 
up only six nodes on the map, while was, had and did have each a dedicated neuron. 
More room is left for memorizing other irregular forms, such us said, paid, etc. The 
evidence is in line with the intuition that irregularly inflected forms have the chance to 
survive the regularizing pressure of –ed forms, if the former are frequent enough to 
carve out their own dedicated area on the map by repeatedly firing a highly specialised, 
although comparatively circumscribed area of map nodes. 
 

 
 

Figure 7: The English past tense 
 
 
5.3 Arabic 3ps-SG perfectives 
 
Comparable results are obtained by feeding a two-level SOM on Arabic verb forms, 
namely third masculine singular perfectives. This time, morphological markers do not 
form continuous strings of characters (as with Indo-European endings), but rather vowel 
patterns that are interdigitated with discontinuous roots. Since forms are presented to the 
map according to their corpus-based frequencies, the pattern a_a_a, by far the most 
frequent and regular one in Arabic perfective verb forms, takes over a substantial 
portion of the second level map, as shown in Figure 8. We have no room here to 
comment on the topological structure of Figure 8 in detail. Suffice it to point out at this 
stage that other less regular patterns of perfective formation emerge from the map, 
including low frequency a_i_a patterns. Most remarkably, high frequent forms such as 
kAna (‘(s)he/it was’) and qAla are recognised as wholes by specialized receptors 
(located in the top left corner of the map). Finally, it should be appreciated that the 
Arabic forms used for training the two-level map are given the same input 
representations as English and Italian forms. Nonetheless, the resulting topology 
consistently reflects the specific non-concatenative nature of Arabic morphology. We 
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take this to show that our architecture exhibits a highly adaptive and convergent 
topological behaviour, based on a comparatively poor battery of built-in inductive 
biases.  
 

 
 

 
Figure 8: The Arabic perfective 

 
 
6. General discussion 
 
It is a well known fact that highly frequent forms tend to be shorter cross-linguistically, 
more readily accessible in the mental lexicon, independently stored as whole items 
(rather than being part of bigger families of paradigmatically-related forms) and thus 
more easily learnable and usable (Caramazza et al. 1988, Stemberger and MacWhinney 
1988, Bybee 1995, Mowrey and Pagliuca 1995, Slobin 1997, Hare et al. 2001). These 
features make them also fairly resistant to morphological overgeneralization through 
time, thus establishing an interesting correlation between irregular inflected forms and 
frequency (Bybee 1985, 1995, Corbett et al. 2001). In the cognitive literature, it has also 
been shown that the existence of a type of instance that occurs with high token 
frequency may provide a highly relevant “cognitive anchor”, serving to organise 
memory and reasoning about other related types (Strack and Mussweiler 1997, 
Goldberg et al. 2004). If we try to reconcile the latter finding with classical accounts of 
lexical entrenchment, we arrive at the seemingly paradoxical conclusion that irregular 
forms should act as “models” of the morphological organisation of the speaker’s mental 
lexicon. 
 Observation of the learning behaviour of a SOM in our previous experiments 
can help us to understand why this paradox is only apparent. Entrenchment of a SOM 
memory trace is a direct function of input frequency and reflects the receptor sensitivity 
to input features. Similar memory traces tend to cluster in locally connected areas of the 
map. During training, specific, connected areas of receptors become increasingly more 
sensitive to specific classes of input stimuli, mimicking what we know about the 
functional specialization of the brain cortex. By training a SOM on a corpus-based 
distribution of inflected forms, then, very frequent short forms such as is or did are, at 
early stages of learning, the only input items to be fully memorised by receptors. These 
early “specialised” receptors are very likely to be fired by other, less frequent input 
forms (e.g. said, read or led)  that happen to be similar to already entrenched memory 
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traces. As lexical stems show a greater degree of formal variability than inflectional 
markers, memory traces of highly frequent forms tend to be fired by similarly inflected, 
less frequent forms. The area of the map surrounding the did receptor, for example, 
becomes more and more sensitive to d-ending verbs.  
 To sum up, we can describe the dynamic behaviour of a SOM learning the 
morphology of a language along the following lines: 
 

• highly frequent forms leave deeply entrenched and highly salient memory traces 
that act as standards of comparison (anchors) for other similarly inflected forms 

 
• highly frequent forms are eventually memorised in full 

 
• less frequent forms tend to fire connected topological areas of the map that are 

sensitive to shared morphological markers 
 

• the surface of each connected area is proportional to the number of form types 
sharing a specific marker: regular markers are thus distributed over larger areas 

 
• formally similar markers are memorised in contiguous areas of the map, thus 

developing hierarchical clusters of formally graded inflections (e.g.: -id, -ed, -t, -
nt  for the English past tense) 

 
• principles of SOM specialization approximate a maximally compact 

arrangement of memory traces. 
 
 It is important to emphasise at this stage that these promising results are 
obtained through unsupervised training sessions, whereby a SOM is given no indication 
about the possible morpho-syntactic content associated with each form. In a sense, as 
adumbrated in the title of this contribution, morphological classes are learned through 
recourse to purely morphological information only. This is interesting, as it allows us to 
speculate that formal principles of the morphological organization of a language can be 
learned by a child through sheer exposure to plain forms and their frequencies, rather 
than to full-fledged sign-based word representations, coupled with form and meaning. It 
is tempting to suggest that a child can use acquired formal principles of paradigmatic 
organization to regiment the proper interpretation of the morpho-syntactic content 
associated with inflectional endings. This suggestion is in line with the empirical 
evidence that children master the morphological inflection of their own language before 
they can use it in the appropriate morpho-syntactic contexts (Clahsen 1989, Wilson 
2003).  
 We would like to conclude the present contribution with a few remarks. First, 
the developmental interplay between type and token frequency of input items throws in 
sharp relief the profound interconnection between entrenchment of highly frequent 
items and overall effects of global organization in the topology of the mental lexicon. 
This is not trivial and serves to reconcile two apparently contradictory but established 
facts in the child learning literature: i) the first stages of language learning are best 
described as a process of item-based rote memorization, leading to gradual development 
of more and more abstract morphological schemata (Tomasello 2000, in press); ii) the 
most frequent evidence available to a child learning the morphology of a language is in 
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fact the most untypical and resistant to rule-based generalizations. We can explain away 
this paradoxical state of affairs by observing that the most frequent input items do in 
fact exemplify a wide range of processes of inflectional marking, thus contributing to 
shaping the overall organization of the child’s morphological lexicon. In the early stages 
of learning, they act as powerful attractors of their own class mates and do so in a very 
focused and efficient way, since they are usually very short and reduced items, in which 
morphological marking has the upper hand, as it were, over lexical marking. Once the 
overall topology is established, the role of prototypes progressively shrinks, to 
eventually give way to a finer-grained organization of inflectional classes. It is at this 
stage, that regular patterns emerge. In our view, SOMs illustrate this dynamics in a very 
clear and intuitive way. Moreover they help us to gain insights into the haystack search 
problem we broached at the beginning of the paper. Being reduced forms, prototype 
attractors make it considerably easier to focus on the morphologically relevant bits of 
word forms. 
 Another related observation is that the existence of highly frequent prototypes 
also solves the paradoxical interplay between local processing and global, long-term 
memory structures. Word processing remains local throughout, but it gets progressively 
influenced by competition among different prototype attractors, each developing a local 
area of item-based influence. We suggest that the interplay of these two factors goes a 
long way towards explaining how global organization effects may eventually result 
from local processing steps.  
 The computational framework for morphology learning presented here leaves 
many issues open. At this juncture, we would like to only mention a couple of them. We 
have been using SOMs as topological metaphors of the mental lexicon, or, in more 
neuro-psychological terms, of long term memory structures. This is attractive but leaves 
us with the following problem: if morphological clusters develop through 
underspecified memory traces, how can a learner retrieve a fully inflected form? We 
emphasised that only highly frequent forms are memorised as wholes and do not 
participate in inflectional clusters: where are the remaining parts of a partially 
memorised form to be found in the lexicon? We have no room here to address these 
questions at the level of detail they deserve. We can only suggest that the maps shown 
in the present paper represent a (first) level of morphological (as opposed to lexical) 
organization of the space of inflected word forms. We know that word forms occupy a 
multidimensional linguistic space, and can thus be classified according to multiple 
perspectives. In this paper, we were mainly concerned with issues of morphological 
processing and classification, because of the peculiar and paradoxical problems they 
seem to raise. No doubt, a full psycho-computational account of the mental lexicon 
should make provision for several classificatory layers, which, in the present 
framework, are likely to be associated with separate, independently self-organized, but 
associatively-related maps. 
 Another interesting, related issue has to do with the classical dynamics of child 
morphology learning known, since the seminal work of Rumelhart and McClelland 
(1986), as the U-shaped curve (Plunkett and Marchman 1991), and its relationship to 
our computational model. In fact, it would not be too difficult to equate the first phase 
of SOM learning, where only very frequent items are memorised in full, with the stage 
of rote memorization characterizing the top left onset of a U-shaped learning curve. The 
intermediate, over-regularization stage may in turn correspond to a phase where bigger 
clusters set in, thus pushing itemized learning into the background. Eventually, the final, 
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mature stage may correspond to a phase of learning fine-grained morphological classes. 
For this picture to be put to the challenging test of a computer simulation, however, 
several further steps remain to be taken in the direction tentatively suggested here.  
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